

Published on Web 04/01/2006

Rhodium(I)-Catalyzed [4+2+2] Cycloadditions of 1,3-Dienes, Alkenes, and Alkynes for the Synthesis of Cyclooctadienes

Paul A. Wender* and Justin P. Christy

Departments of Chemistry and of Molecular Pharmacology, Stanford University, Stanford, California 94305-5080 Received February 8, 2006; E-mail: wenderp@stanford.edu

In 1989, we reported the first transition metal-catalyzed, intramolecular [4+2] cycloadditions of dienes and alkynes, representing a mechanistically novel and synthetically useful route to cyclohexadienes (a to f, Scheme 1) that works effectively often at room temperature, even when the corresponding Diels-Alder reaction requires forcing conditions or is ineffective.¹ This reaction was subsequently shown to work with dienes and alkenes² or allenes.³ We anticipated that the metallacyclic intermediates (**b** and **d**) presumably involved in these reactions could be intercepted with various 1- to n-carbon trapping agents to produce higher order [2+2+n] and [4+2+n] cycloadducts. Subsequent studies showed that the [4+2] cycloaddition of dienes and alkynes could indeed be diverted with CO to produce a three-component [4+2+1]product (cycloheptadienone e) as well as [2+2+1] product (cyclopentenone c).⁴ In 2002, the Gilbertson group creatively showed that the metallacycles involved in these processes could also be captured by alkynes to give a [4+2+2] cyclooctatriene product g.⁵ An equally impressive, alternative [4+2+2] process for eightmembered ring synthesis based on enynes and dienes was also reported by the P. A. Evans group.⁶

In our studies on the [2+2+1] reactions of dienes, alkynes, and CO (a to c), we observed that dienes accelerate the reaction relative to alkenes, providing a new route to alkenyl-substituted cyclopentenones c, a dienyl Pauson-Khand reaction. This observation suggested that dienes, unlike alkenes, might react with a tethered alkene in the presence of CO to produce cyclopentanones c, a previously unknown process. This led to the first examples of a catalytic [2+2+1] route to cyclopentanones.⁴ Given the enhanced reactivity of dienes observed in these studies, we have now examined the reaction of dienes as 4-carbon components tethered to alkenes in the presence of alkynes as trapping agents. We report herein the first examples of this combination in a metal-catalyzed [4+2+2] cycloaddition, producing cyclooctadienes often in high yields and with regiocontrol.⁷ In preliminary studies, we have also established the first fully intermolecular example of this threecomponent process.

The results of a preliminary screen of several rhodium(I) catalysts are shown in Table 1. It is noteworthy that these catalysts favor the [4+2+2] reaction over the otherwise facile intramolecular [4+2] process, even when only 1.1 equiv of an alkyne trapping agent is used. [RhCl(CO)₂]₂ modified with AgSbF₆ results in the highest combined yield of [4+2+2] cycloadducts under the conditions described in Table 1 (85%, entry 2). Lower temperatures (60 to 40 °C) were also found to favor the three-component process. Further optimization studies showed that increasing the reaction concentration from 0.01 to 0.10 M also leads to overall higher yields of the desired products. It should be noted that only trace amounts (<5%) of the intramolecular [4+2] product are ever observed under the optimized conditions.

The [4+2+2] reaction has been found to proceed efficiently with a variety of terminal alkynes having ether, alkyl, ester, or ketone substituents (Table 2). Reaction times ranged from minutes to 5 h.

Scheme 1. Trapping of Metallacycles with π -Components

Table 1. Initial Catalyst Screen with Diene-ene 1 and Methyl Propargyl Ether

MeO				
//	OMe	\rangle		QМе
F /	H-==/	E ~	E, /~	
ĪX		<u> </u>		J
E	// conditions ^a	E V	E ~ /=	<
<u> </u>		/-Pr		<i>i-</i> Pr
1	<i>i</i> -Pr	2a	2b	
				ratio [/]
entry	catalyst ^b	additive	yield ^d	(2a:2b)
1	[RhCl(CO),],	none	12%	5.0:1
2"	[RhCl(CO) ₂] ₂	AgSbF	85%	4.2:1
3	RhCl(PPh ₃) ₃	AgSbF ₆	22%	1.1:1
4	[Rh(NBD)Cl]	2 AgSbF ₆	55%	1.1:1
5	$[(C_{10}H_{8})Rh(COD)]^{+}$	SbF ₆ none	31%	0.63:1

^{*a*} Conditions (unless otherwise noted): DCE (0.01 M), 65 °C, 1.1 equiv of methyl propargyl ether. ^{*b*} 5 mol %. ^{*c*} 5 mol %. ^{*d*} GC yield. ^{*e*} DCE (0.10 M), 40 °C, 1.2 equiv of methyl propargyl ether. ^{*f*} Determined by ¹H NMR.

Internal alkynes such as 1,4-dimethoxybut-2-yne and hex-3-yn-2one react inefficiently under the reaction conditions. The regioselectivity of the alkyne insertion is influenced by both steric and electronic features of the alkyne. Both methyl and tert-butyldimethylsilyl (TBS) propargyl ethers give comparable yields and regioselectivities (entries 1 and 2). Replacing the methylenemethoxy group with a bulkier cyclopropyl group increases the regioselectivity from 4.2:1 to 11.7:1 (entry 1 versus 3). When ethyl propiolate is used, cycloadducts 5a and 5b are formed in 72% yield (ratio 6.4:1, entry 4). Additionally, when the reaction is run with 3-butyn-2-one the regioselectivity is reversed, favoring the 6b isomer (ratio 1:1.9, combined yield 81%, entry 5). Significantly, the [4+2+2] reaction can also be carried out under one atm of acetylene, yielding cycloadduct 7 in 75% yield (entry 6). The scope of the reaction with respect to diene-ene substitution and tether type is shown in Table 3. Substitution in the 2-position of the diene results in higher yields and accelerated reaction rates relative to those obtained with the unsubstituted diene (entries 1-3). This is similar to the substituent effects observed in dienyl [2+2+1] cyclo-

^{*a*} Conditions (unless otherwise noted): 5 mol % [RhCl(CO)₂]₂, 10 mol % AgSbF₆, DCE (0.10 M), 40 °C, 1.2 equiv of alkyne. ^{*b*} 2.0 equiv of alkyne. ^{*c*} 80 °C. ^{*d*} Determined by ¹H NMR.

additions.⁴ With R = i-Pr the reaction was complete in 3 h, providing cycloadducts **2a** and **2b** in 85% combined yield (entry 1).

Substrates containing heteroatoms were also tolerated and allowed for the efficient formation of the corresponding heterocycles (entries 4 and 5). Significantly, substitution at the 2-position of the alkene moiety results in the formation of cycloadducts **18a** and **18b** (68% combined yield), a noteworthy result due to its stereoselectivity (cis-fusion) and its creation of an angular quaternary center (entry 6). Methyl substitution at the terminal position of the diene (entry 7) results in regio- and stereoselective formation of **19a** (37% yield). Replacing the allyl group with a crotyl group or a homoallyl group to produce bicyclo[6.4.0] systems results thus far in only trace conversions, even when the reaction is heated (60 °C) for 24 h (not shown).

Remarkably, the [4+2+2] cycloaddition can be carried out *inter*molecularly, as demonstrated by the chemo-, diastereo-, and regioselective conjunction of three different π -systems (norbornene, 2,3-dimethyl-1,3-butadiene, and methyl propargyl ether) to produce cycloadduct **20** (entry 8). This is the first example of a nontethered, three-component [4+2+2] cycloaddition.

In summary, initial examples of rhodium(I)-catalyzed [4+2+2] cycloadditions between diene-enes and terminal alkynes are described along with studies on substituent effects and the regio- and the diastereoselectivity of the reaction. Additionally, the first example of a three-component [4+2+2] cycloaddition is reported. These processes allow for the rapid and efficient construction of a wide variety of eight-membered ring systems.

Acknowledgment. This research was supported by a grant (CHE-0131944) from the National Science Foundation. HRMS was provided by the University of California, San Francisco.

^{*a*} Conditions same as in Table 2 (unless otherwise noted), methyl propargyl ether (1.2 equiv). ^{*b*} 2.0 equiv of alkyne. ^{*c*} 3.0 equiv of alkyne. ^{*d*} 60 °C. ^{*e*} 5.0 equiv of diene, 6.0 equiv of norbornene. ^{*f*} Determined by ¹H NMR.

Supporting Information Available: Full experimental details and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Wender, P. A.; Jenkins, T. E. J. Am. Chem. Soc. 1989, 111, 6432–6434.
 (a) Jolly, R. S.; Luedtke, G.; Sheehan, D.; Livinghouse, T. J. Am. Chem. Soc. 1990, 112, 4965–4966. (b) McKinstry, L.; Livinghouse, T. Tetra-
- *hedron* 1994, 50, 6145–6154.
 Wender, P. A.; Jenkins, T. E.; Suzuki, S. J. Am. Chem. Soc. 1995, 117,
- (3) wender, P. A.; Jenkins, I. E.; Suzuki, S. J. Am. Chem. Soc. 1995, 117, 1843–1844.
- (4) For examples of [4+2+1] and [2+2+1] reactions with diene-ynes, see: (a) Wender, P. A.; Deschamps, N. M.; Gamber, G. G. Angew. Chem., Int. Ed. 2003, 42, 1853–1857. For examples of [2+2+1] reactions with diene-enes, see: (b) Wender, P. A.; Croatt, M. P.; Deschamps, N. M. J. Am. Chem. Soc. 2004, 126, 5948–5949. For an impressive alternative [4+2+1] cycloaddition, see: (c) Ni, Y.; Montgomery, J. J. Am. Chem. Soc. 2006, 128, 2609–2614 and references therein.
- (5) Gilbertson, S.; DeBoef, B. J. Am. Chem. Soc. 2002, 124, 8784-8785.
- (6) (a) Evans, P. A.; Robinson, J. E.; Baum, E. W.; Fazal, A. N. J. Am. Chem. Soc. 2003, 125, 14648; J. Am. Chem. Soc. 2002, 124, 8782-8783. (b) Evans, P. A.; Baum, E. W. J. Am. Chem. Soc. 2004, 126, 11150-11151.
 (c) Evans, P. A.; Baum, E. W.; Fazal, E. W.; Aleem, N.; Pink, M. Chem. Commun. 2005, 1, 63-65. (d) Baik, M.; Baum, E. W.; Burland, M. C.; Evans, P. A. J. Am. Chem. Soc. 2005, 127, 1602-1603.
- (7) For other examples of related metal-catalyzed [4+2+2] cycloadditions, see: (a) Chen, Y.; Kiattansakul, R.; Ma, B.; Synder, J. K. J. Org. Chem. 2001, 66, 6932–6942. (b) Ma, B.; Snyder, J. K. Organometalics 2002, 21, 4688–4695. (c) Varela, J.; Castedo, L.; Saa, C. Org. Lett. 2003, 5, 2841–2844. (d) Murakami, M.; Ashida, S.; Matsuda, T. J. Am. Chem. Soc. 2006, 128, 2166–2167. For a review of related rhodium-catalyzed cycloadditions, see: Modern Rhodium-Catalyzed Organic Reactions; Evans, P. A., Ed.; Wiley-VHC Verlag GmbH & Co.: Weinheim, Germany, 2005.

JA060878B